Mining Compatible/Incompatible Entities from Question and Answering via Yes/No Answer Classification using Distant Label Expansion

نویسندگان

  • Hu Xu
  • Lei Shu
  • Jingyuan Zhang
  • Philip S. Yu
چکیده

Product Community Question Answering (PCQA) provides useful information about products and their features (aspects) that may not be well addressed by product descriptions and reviews. We observe that a product’s compatibility issues with other products are frequently discussed in PCQA and such issues are more frequently addressed in accessories, i.e., via a yes/no question “Does this mouse work with windows 10?”. In this paper, we address the problem of extracting compatible and incompatible products from yes/no questions in PCQA. This problem can naturally have a two-stage framework: first, we perform Complementary Entity (product) Recognition (CER) on yes/no questions; second, we identify the polarities of yes/no answers to assign the complementary entities a compatibility label (compatible, incompatible or unknown). We leverage an existing unsupervised method for the first stage and a 3-class classifier by combining a distant PU-learning method (learning from positive and unlabeled examples) together with a binary classifier for the second stage. The benefit of using distant PU-learning is that it can help to expand more implicit yes/no answers without using any human annotated data. We conduct experiments on 4 products to show that the proposed method is effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

ECNU: Using Multiple Sources of CQA-based Information for Answers Selection and YES/NO Response Inference

This paper reports our submissions to community question answering task in SemEval2015, which consists of two subtasks: (1) predict the quality of answers to given question as good, bad, or potentially relevant and (2) identify yes, no or unsure response to a given YES/NO question based on the good answers identified by subtask 1. For both subtasks, we adopted supervised classification method a...

متن کامل

VectorSLU: A Continuous Word Vector Approach to Answer Selection in Community Question Answering Systems

Continuous word and phrase vectors have proven useful in a number of NLP tasks. Here we describe our experience using them as a source of features for the SemEval-2015 task 3, consisting of two community question answering subtasks: Answer Selection for categorizing answers as potential, good, and bad with regards to their corresponding questions; and YES/NO inference for predicting a yes, no, ...

متن کامل

ارایه یک پیکره‌ پرسش و پاسخ مذهبی در زبان فارسی

Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.04499  شماره 

صفحات  -

تاریخ انتشار 2016